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Abstract
Conditions for thermodynamic equilibrium of liquid drops on solid substrates are presented. It
is shown that if surface force (disjoining/conjoining Derjaguin pressure) action in a vicinity of
the three-phase contact line is taken into account the condition of thermodynamic equilibrium is
duly satisfied. Then the thermodynamic expressions for equilibrium contact angles of drops on
solid substrates and menisci in thin capillaries are expressed in terms of the corresponding
Derjaguin isotherm. It is shown that equilibrium contact angles of drops vary significantly
depending on the vapour pressure in the ambient atmosphere, while there is a single, unique
equilibrium contact angle in thin capillaries. It is also shown that the static advancing contact
angle of a drop depends on its volume, in agreement with experimental data. In the case of
menisci in capillaries, the expression for the receding contact angle is deduced, with results that
are also in agreement with known experimental data.

1. Thermodynamic equilibrium of drops on solid
substrates

Let us consider the equilibrium of liquid drops on
homogeneous perfectly flat solid substrates. Two cases are
of interest: the partial wetting case (e.g. water and aqueous
electrolyte solutions on glass, mica and silicon wafers), and the
complete wetting case (e.g. oils on the same solid substrates as
above). Let us focus attention on the case of partial wetting.
For thermodynamic equilibrium the following condition must
be satisfied: the chemical potential of liquid molecules in
the whole system should be equal. The latter results in
the following three equilibrium conditions: (a) liquid–vapour
equilibrium, (b) vapour–solid equilibrium, and (c) liquid–solid
equilibrium.

Requirement a

The first requirement demands the equality of chemical
potentials of the liquid molecules in the ambient vapour phase
and the liquid phase inside the drop. The latter results in
Kelvin’s equation for the excess pressure inside the drop:

Pe = RT

vm
ln

ps

p
, (1)

3 Author to whom any correspondence should be addressed.

with Pe = Pv − Pl, where Pv and Pl are the pressures in
the vapour and the liquid phase, respectively; vm is the molar
volume of the liquid; ps is the pressure of the saturated vapour
at temperature T (value for a flat solid surface); R is the
gas universal constant; p is the vapour pressure, which is at
equilibrium with the liquid drop. Equation (1) determines a
single equilibrium excess pressure Pe for a given radius of
the drop, ρe. Hence, the equilibrium drop size depends on
the vapour pressure: if the vapour pressure p in the ambient
air is varied, then the size of an equilibrium drop will vary
accordingly. Thus there is an infinite number of equilibrium
drops on a solid substrate corresponding to the infinitely many
possible different values of p. Note that the ‘excess’ pressure
inside the drop, Pe, is negative, as the pressure inside the drop
is higher than the pressure in the ambient air (Laplace’s law,
that we shall recover below) expressing such overpressure in
terms of the surface tension of the liquid. Accordingly, the
right-hand side in equation (1) should be negative, but the latter
is possible only if p > ps; that is, drops can be at equilibrium
only with over-saturated vapour.

Requirement b

The vapour molecules tend to adsorb on the solid surface. Then
thermodynamic equilibrium requires equality of chemical
potentials of molecules in the vapour phase and in the adsorbed
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state. Let he be the equilibrium thickness of the adsorbed layer
at the vapour pressure p. Let us consider that the adsorption
is determined by the action of some ‘surface forces’. Let
fD(he) be the potential of these adsorption forces. The excess
free energy per unit area of a flat equilibrium liquid film of
thickness he on a solid substrate at equilibrium with the vapour
in the surrounding air is given by

�f = [γ + Pehe + fD(he)+ γsl − γsv]S, (2)

where S is the surface covered by the liquid film; γ, γsl, γsv

are liquid–vapour/air, solid–liquid and solid–vapour interfacial
tensions, respectively. Indeed, a bare solid substrate without an
adsorbed liquid layer cannot be at thermodynamic equilibrium.

Rather than using the potential of surface forces, fD(he),
let us use the disjoining or conjoining pressure, �(he), as
defined by Derjaguin [1], with �(h) = −[ d fD (h)

dh ]T . Hence,

fD(he) =
∫ ∞

he

�(h) dh. (3)

This Derjaguin pressure can be experimentally measured in the
range of surface force action, h � hs ∼ 100 nm [1–3].

Requirement c

The excess free energy of the liquid drop must be a minimum.
To simplify let us consider a two-dimensional (cylindrical)
drop. Then the excess free energy, �, of such a liquid drop
on a solid substrate is

� = γ Se + PeVe +�D + (γsl − γsv)S −�f, (4)

where Se, Ve, and �D = ∫
S fD(h) dx are excesses of

the vapour–liquid interfacial area, the excess volume, and
the excess energy associated with the surface force action,
respectively; �f (2) is the excess free energy of a reference
state.

Let h(x) be the unknown profile of the cylindrical liquid
drop, then equation (4) can be rewritten as

� =
∫ {

γ (
√

1 + h′2 − 1)+ Pe(h − he)

+
∫ ∞

h
�(h) dh −

∫ ∞

he

�(h)

}
dx, (5)

where x is the tangential coordinate and the integration is
taken over the whole space occupied by the system. Under
equilibrium conditions the excess free energy, �, should reach
its minimum value. As the problem is posed in functional
space, then the following conditions must be satisfied [4, 5].

(A) The first variation of the free energy, δ�, should be zero.
(B) The second variation, δ2�, should be positive.
(C) Transversality condition at the three-phase contact line:

the drop edge can move only along the surface of a thin
equilibrium film in front, that is along the surface h = he.
This is a condition of swift matching between the drop
at its perimeter with the thin flat liquid film ahead of it:
h′(h = he) = 0; or h′ → 0 as x → ∞.

(D) With f = γ (
√

1 + h′2 −1)+ Pe(h −he)+
∫ ∞

h �(h) dh −∫ ∞
he
�(h), the solution, u, of the Jacobi equation

[
∂2 f

∂h2
− d

dx

(
∂2 f

∂h ∂h′

)]
u − d

dx

(
∂2 f

∂h′2 u′
)

= 0, (6)

is to vanish at no position inside the area of integration
save at its boundaries. Jacobi’s equation determines one
among the otherwise infinite solutions of the functional
variation problem providing a sufficient condition of
minimum. We have below restricted consideration to the
� function of h and not of h′ or other higher derivatives.

Condition (A) yields an Euler equation, which gives an
equation for the drop profile:

∂ f

∂h
− d

dx

∂ f

∂h′ = 0 (Euler equation),

or

γ h′′

(1 + h′2)3/2
+�(h) = Pe (Laplace–Derjaguin equation),

(7)
which is the earlier mentioned Laplace equation (except a
factor of 2 missing here due to the cylindrical approximation)
augmented with the Derjaguin surface force contribution.

Far from the apparent three-phase contact line, that is for
h � 100 nm, the action of the Derjaguin pressure can be
neglected in equation (7): γ h′′

(1+h′2)3/2 = Pe. The solution of this
equation is a part of a circumference of radius ρ = − γ

Pe
(recall

that for a drop Pe is negative). The second condition, (B),
demands ∂2 f

∂h′2 > 0, or γ

(1+h′2)3/2 > 0, which is always satisfied.
The Jacobi equation (6) reduces to

d

dx

u′

(1 + h′2)3/2
+�′(h)u = 0. (8)

Differentiating equation (7) once yields d
dx

h′′
[1+(h′)2]3/2 +�′(h) ·

h′ = 0. Comparison of the latter equation and the Jacobi
equation (8) shows that u(x) = Ch′(x). Thus equation (7)
really gives a minimum value to the excess free energy (5) if
the first derivative vanishes nowhere inside the drop (except for
x = 0 and ∞).

The transversality condition (C) gives [ f − h′ ∂ f
∂h′ ]x=� =

0, where � identifies a microscopic drop edge. The latter
condition can be rewritten as [(√1 + h′2 − 1)− h′2√

1+h′2 ]x=� =
0, or [ 1√

1+h′2 ]x=� = 1, which is satisfied only if (h′)x=� = 0,

or h′(he) = 0.
Let us assume that the liquid profile does not tend

asymptotically to the equilibrium thickness he but meets the
film at a ‘final point’ x = x0. Then in a vicinity of this
point we can approximate the Derjaguin pressure by a linear
term �(h) ≈ �(he) − a(h − he), where a = −�′(he) is a
positive value, he is a stable flat liquid film, the derivative of
the Derjaguin pressure must be negative and �(he) = Pe. The
liquid profile in this region has a low slope, hence equation (7)
can be rewritten as γ h′′ − a(h − he) = 0, whose solution is

h(x) = he + C1 exp(αx) + C2 exp(−αx), where α =
√

a
γ

,

2
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Figure 1. Equilibrium drop. 1—Circular cap (radius ρ), where
capillary Laplace force dominates; 2—transition zone, where both
capillary Laplace and disjoining/conjoining Derjaguin pressures are
equally important; and 3—flat equilibrium film in front of the drop.

and C1 and C2 are two integration constants. At x = x0

we have h(x0) = he, and h′(x0) = 0. These two boundary
conditions yield two algebraic equations for the determination
of C1 and C2: C1 exp(αx0) + C2 exp(−αx0) = 0, and
C1 exp(αx0)− C2 exp(−αx0) = 0. The solution C1 = C2 = 0
is unacceptable. Hence, if h → he the only possibility is
that C1 = 0 and the liquid profile has the following form
h(x) = he + C2 exp(−αx). Accordingly, the liquid profile
in the transition zone tends asymptotically to the equilibrium
thickness he and does not meet the equilibrium flat film in any
‘final’ point x0 contrary to what was earlier assumed.

2. Equilibrium contact angle and surface forces
(Derjaguin pressure)

According to the Laplace–Derjaguin equation (7) the overall
profile of a drop can be subdivided into three parts (figure 1):
a spherical cap (using this part a macroscopic contact angle
can be determined), a transition zone, where both capillary
Laplace pressure and disjoining/conjoining Derjaguin pressure
are equally important, and a flat equilibrium liquid film region
ahead of the drop.

The second order differential equation (7) can be

integrated once, which gives 1√
1+h′2 = C−Peh−∫ ∞

h �(h) dh
γ

, where
C is an integration constant to be determined. As due to the
transversality condition h′(he) = 0, then C = γ + Pehe +∫ ∞

he
�(h) dh. Hence, the drop profile is described by the

following equation:

h′ = −
(

γ 2

[γ − L(h)]2
− 1

)1/2

, (9)

where L(h) = Pe(h − he) − ∫ h
he
�(h) dh. As the expression

under the square root in equation (9) must be positive, it
demands that

0 � L(h) � γ, (10)

where the first equality corresponds to a zero derivative, and
the second one corresponds to a diverging (infinite) value.

On the other hand at the drop apex, H , the derivative
vanishes, h′(H ) = 0. Consequently, C = γ + Pe H +∫ ∞

H �(h) dh, can be determined too. Note that the two
definitions of C are identical. Hence,

1√
1 + h′2 = γ + Pe(H − h)− ∫ H

h �(h) dh

γ
. (11)

Outside the range of the disjoining pressure action,
equation (11) reduces to

1√
1 + h′2 = γ + Pe(H − h)

γ
, (12)

which describes the circular cap of the drop in figure 1.
Intersection of the latter profile with the thin equilibrium film
of thickness he defines an apparent three-phase contact line and
the macroscopic equilibrium contact angle: h′(he) = − tan θe.
Then equation (12) can be rewritten as Pe = − γ (1−cos θe)

H .
Casting this expression into equation (11) at h = he results
in the following expression for the contact angle in the case of
sessile drops on a flat substrate:

cos θe = 1 +
1
γ

∫ H
he
�(h) dh

1 − he
H

≈ 1 + 1

γ

∫ ∞

he

�(h) dh, for hs 
 H. (13)

Equation (13) shows that for the partial wetting case
∫ ∞

he

�(h) dh < 0, (14)

otherwise equation (13) is meaningless if θe is to have a finite
non-zero value.

Note that the equilibrium contact angle defined by
equation (13) is not completely determined by the shape of
the Derjaguin pressure isotherm: it also depends on the lower
limit of integration, he, which is determined by the equilibrium
excess pressure Pe. In other words, the equilibrium contact
angle of drops depends on the equilibrium volume of the drop,
which can vary from ‘infinity’ (at Pe = 0) to a minimum value
at Pe = �min.

An interesting point is that, if for the Derjaguin pressure
we take �(h) = A

h3 > 0 (LVdW only), substitution of this
expression into equation (13) yields cos θe ≈ 1+ 1

γ

∫ ∞
he

A
h3 dh =

1 + A
2γ h2

e
> 1, which corresponds to complete wetting [5, 6].

This latter condition implies that no solution exists for an
equilibrium liquid film thickness, he, coexisting outside with
the drop at oversaturation. And hence this corresponds to
the complete wetting case [5]. If, on the other hand, we
consider A < 0, then there is a solution for an equilibrium
film thickness, he, but as for this value [d�(he)/dh] > 0 such
an equilibrium value is unstable [5] and hence not observable.
Any finite value he being unstable, this corresponds to the non-
wetting case. In view of the above, it is concluded that in order
to explicitly account for partial wetting we must have a more
complete expression for the Derjaguin pressure than those
given by the LVdW component only. This can be achieved by
considering the various electro-physical–chemical phenomena
involved in the three-phase contact region (figure 2).

3. Derjaguin pressure isotherm and significant
components of the surface forces

The above used expression for �(h) is historically called the
molecular or dispersion component of the Derjaguin pressure,

3
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Figure 2. Equilibrium drop and the liquid profile in a vicinity of the
apparent three-phase contact line. 1—Bulk liquid, where boundary
layers do not overlap; 2—boundary layer in the vicinity of liquid–air
and liquid–solid interfaces; 3—a region where boundary layers
overlap, 4—flat thin equilibrium film. The latter two are the regions
where Derjaguin pressure acts.

typical for non-polar liquid films (it is also denoted as the
London–Van der Waals component) [3]. In general terms one
can write

�L−VdW(h) =

⎧⎪⎨
⎪⎩

A

h3
, h < λ

B

h4
, h > λ

(15)

where λ is a characteristic wavelength and A is the Hamaker
constant. This Hamaker constant can be either positive or
negative and, consequently, the LVdW interaction may be
repulsive or attractive. Typical positive values are A ∼
10−14 erg for oil films on glass, quartz or mica surfaces.
Thus, for a liquid layer of thickness h ∼ 10−7 cm, such a
Derjaguin pressure component is �L−VdW ∼ 107 dyn cm−2.
For comparison, consider an oil drop of radius ρ ∼ 0.1 cm
sessile on a solid substrate; at standard laboratory conditions
the surface tension of oils is about γ ∼= 30 dyn cm−1. Then
the capillary pressure inside the spherical part of the drop is
2γ
ρ

∼ 2·30
0.1 = 6 × 102 dyn cm−2. Accordingly, in the vicinity

of the three-phase contact line the Laplace pressure is much
smaller than the Derjaguin pressure. This justifies why the
latter distorts significantly the spherical shape of drops in the
vicinity of the three-phase contact line and hence drops cannot
remain spherical up to the contact line!

Another item to include in the Derjaguin pressure
originates in electric double layers (EDLs). There are a
number of approximate expressions for such an electrostatic
component [1, 2]. For example, in the case of an
electrolyte solution (polar liquid), the EDL interaction decays
exponentially with a characteristic Debye screening length,
1/κ ∼ 1–100 nm. This EDL force can be either repulsive
or attractive. For a liquid enclosed between two semi-infinite
plates it is

�EDL(h) = D exp(−κh), (16)

where h denotes distance and D is a characteristic parameter
of the system, which can be either positive or negative. Other
more complete expressions than (16) have been obtained for
various other systems [1, 2]. It is noteworthy that the EDL
component of the Derjaguin pressure does not vanish even
when only one of the two surfaces is charged. The physical
reason for this phenomenon is the deformation of the EDL if

Figure 3. Derjaguin isotherms: 1—complete wetting; 2—partial
wetting. The value he defines the equilibrium thickness of coexisting
equilibrium flat films with drops.

the distance between the surfaces is smaller than the Debye
length.

Incidentally, considering that �(h) = �LVdW(h) +
�e(h) corresponds to the original DLVO theory [1, 2, 7] that
made possible the explanation of the stability of colloidal
suspensions/emulsions, as well as the static and the kinetics
of wetting [5] (N.B. As might have been noticed, we denote
by Derjaguin pressure (or isotherm) all possible forms of
disjoining or conjoining pressure components (or isotherms)).

Yet another component of the Derjaguin pressure is the so-
called structural component caused by e.g. orientation of water
molecules (electric dipoles) in the vicinity of the solid surface
or at the aqueous solution–air interface. Only a semi-empirical
relationship exists, providing the dependence of such structural
force on the thickness of the liquid film,

�S(h) = K e−νh , (17)

where K and ν are constants. For illustration 1/ν ∼ 10–15 Å,
which is the characteristic thickness of the so-called hydration
layer. The understanding of the pre-exponential factor K is at
present far from being complete, and it can be extracted only
from experimental measurements of the Derjaguin pressure. It
can be either positive or negative.

Adding the three components mentioned above (there are
more than these three already established in the literature), we
have

�(h) = �L−VdW(h)+�EDL(h)+�S(h). (18)

Figure 3 illustrates the dependence of the Derjaguin
pressure on the thickness of a flat liquid film for the
cases of complete wetting (curve 1, which corresponds to
just �L−VdW(h) and is typical for oil drops on a glass
substrates) and partial wetting (curve 2, which corresponds to
equation (18), and it is typical for aqueous electrolyte solutions
on glass substrates).

In view of equation (13) and figure 3 we can write

cos θe ≈ 1 + 1

γ

∫ ∞

he

�(h) dh ≈ 1 − S− − S+
γ

. (19)

Thus partial wetting is possible only if S− > S+. Note that
there are two solutions of the equation �(he) = Pe (figure 3).
However, only one of them satisfies the thermodynamic
stability condition d�(he)

dh < 0. For a thorough discussion of
this question see [5].

4
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Figure 4. Left: schematic illustration of the formation of a drop by
appropriate liquid pumping. L—radius of the drop base; θ—contact
angle. 1—Liquid drop, 2—solid substrate with a small orifice;
3—liquid source (syringe). Right: static advancing and receding
contact angles.

4. Static hysteresis of the contact angle of a sessile
drop on homogeneous perfectly flat solid substrates

The derivation of equation (13) shows that it determines a
single, unique equilibrium contact angle (at fixed external
conditions). Experiments, however, show contact angle
hysteresis with an infinite number of apparent ‘equilibrium
positions’ and ‘equilibrium contact angles’ of a sessile drop
on a solid surface such that θr < θ < θa, where θr

and θa denote static receding and advancing contact angles.
Indeed, let us consider a liquid drop on a horizontal substrate,
which is slowly growing by pumping through an orifice in
the substrate (figure 4). If we stop pumping liquid an
equilibrium contact angle of the drop may be established.
However, if we continue carefully and slowly pumping liquid
in through the orifice in the centre, the contact angle grows
correspondingly. Experimental observation shows that the
radius of the drop base does not change until a critical value
of the static advancing contact angle, θa, is reached. Further
pumping results in subsequent drop spreading. In the reverse
experiment, if we start from the static advancing contact
angle, θa, and slowly suck liquid through the same orifice,
then the contact angle will decrease without the drop base
shrinking until another critical static receding contact angle, θr,
is reached, after which the drop starts to recede and eventually
collapses. For water drops on homogeneous perfectly flat glass
surfaces, θr ∼ 0◦–5◦, while θa is in the range of 40◦–60◦.

It is widely accepted that contact angle hysteresis follows
from imperfections like surface roughness and mechanical or
chemical heterogeneity of the solid substrate. This is indeed
true but our view is that hysteresis could be found even on
homogeneous perfectly flat solid surfaces as a consequence
of the peculiar shape of the Derjaguin isotherm in the partial
wetting case (figure 3). Already it is known that contact angle
hysteresis is present on surfaces which are clearly molecularly
smooth as with free liquid films [8, 9]. As thermodynamics
requires a single, unique equilibrium contact angle, θe, any
other contact angle, θ , in the range θr < θ < θa means that the
liquid drop is not at equilibrium, but presumably there is a very
slow ‘microscopic’ motion in a tiny vicinity of the apparent
three-phase contact line. Such a motion abruptly becomes
‘macroscopic motion’ after the critical contact angles, θa or θr,
are reached.

Let us assume that a sessile drop with the equilibrium
contact angle θe is on a homogeneous perfectly flat solid
substrate where the liquid profile depends on only one variable
x , thus again, for simplicity, assuming a cylindrical drop. We
have to solve the Laplace–Derjaguin equation (7) with the
following boundary conditions x = 0, h = H , h′ = 0,
where H is the maximum height of the drop (apex) over the
surface. We shall further assume that he 
 H . By integration
of equation (7) we obtain for the derivative of the liquid profile,
h′, the same expression (11), which we rewrite as

1√
1 + h′2 = γ − ϕ(h, Pe)

γ
, (20)

where ϕ(h, Pe) = −Pe(H − h) + ∫ ∞
he
� dh. Then the

condition for equilibrium of a drop with an equilibrium flat
film of thickness he, h′ → 0 at h → he, becomes ϕ = 0,
hence

Pe(H − he)−
∫ ∞

he

� dh = 0, (21)

where Pe = −γ /ρe, with ρe the radius of curvature of the
circular part of the surface of the drop (figure 1), and hence
cos θe = (ρe − H)/ρe.

By differentiating equation (21) with respect to Pe and
bearing in mind that Pe < 0, we obtain

∂H

∂Pe
= − H − he

Pe
> 0. (22)

Equation (22) shows that the apex height of equilibrium drops,
H , decreases with increasing oversaturation, when the value
of Pe diminishes, as equation (1) indicates (Pe = Pv − Pl).
However, this decrease has certain limits, since drops can be at
equilibrium with flat films only if Pe > �min (figure 5). For
Pe < �min there is neither a liquid film nor a drop on the solid
surface at equilibrium. When Pe decreases and approaches
�min, drops whose size diminishes should be ‘torn’ off the
surface and pass into the vapour phase.

Maintaining the external conditions, we consider now
non-equilibrium profiles of a drop when its volume is changed
by pumping in liquid (see figure 4) and the excess pressure
P = Pv − Pl is different from the equilibrium value. Non-
equilibrium contact angles are formed if P < Pe. The
condition for the existence of a solution for equation (20) is
γ � ϕ(h, P) � 0, where now the function ϕ(h, P) is given by

ϕ(h, P) = −P(H − h)+
∫ ∞

h
�(h) dh. (23)

Examples of the form of the function ϕ(h, P) (curves 2–
3) are shown in the lower part of figure 5. The extrema of
ϕ(h, P) are found from the condition P = �(h), just as in the
case of equilibrium, i.e. from the points of intersection of the
Derjaguin isotherm with the straight line P = const. It follows
from equation (20) that for a drop equilibrium profile, i.e. for
P = Pe, the function ϕ(h, Pe) vanishes at h = he. On the other
hand, ϕ(h, Pe) also vanishes at h = H . Since ϕ(h, Pe) > 0,
the function ϕ(h, Pe) has a maximum for h = h2 (figure 5,
curve 2).

5
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Figure 5. Sessile drop on a solid substrate. Upper figure: Derjaguin
isotherm�(h) in the case of partial wetting (curve 1). Lower figure:
corresponding curves (2, 3) of the functions ϕ (23) determining the
conditions of equilibrium (curve 2) or quasi-equilibrium of a drop
before the advancing starts (curve 3).

At lower pressures, i.e. for P < Pe, when the drop surface
becomes more convex (from above), the line ϕ(h, P) (figure 5,
curve 3) is located above that of the equilibrium curve 2. The
condition of quasi-equilibrium is violated and the perimeter
of the drop starts to advance after the maximum of ϕ(h, P)
reaches the dashed line γ = const (curve 3). This condition
corresponds to the appearance of a thickness, h = h3, with
a vertical tangent h′ = ∞ on the profile of the drop. Then
liquid flows from the drop to the film by the so-called Frenkel’s
caterpillar track (or unrolling carpet) mechanism at ϕ(h, P) >
γ . This shows that the static advancing contact angle does not
depend on the roughness of the solid substrate if size roughness
is below the value of h3 ∼ 10–30 nm.

To calculate the value of the static advancing contact angle
θa, we use the condition ϕ(h, P) = γ :

− Pa(Ha − h3)+
∫ ∞

h3

�(h) dh = γ . (24)

Keeping in mind that Pa = γ (cos θa − 1)/Ha, it follows
that

cos θa = Pah3 + 1

γ

∫ ∞

h3

�(h) dh ≈ 1

γ

∫ ∞

h3

�(h) dh. (25)

Then, using (13) we obtain

cos θe − cos θa ≈ 1 + 1

γ

∫ h3

he

�(h) dh > 0, (26)

which shows that cos θe > cos θa and θa > θe. Thus, in the
case of a drop, the advancing angle is always larger than the
equilibrium angle.

Let us we now assume that the Derjaguin pressure changes
very abruptly between hmin and h1 (figure 3), then h3 ≈ hmin ≈
h1 = const (figure 5). In this case equation (25) reduces to

cos θa ≈ S+
γ
, (27)

to be compared to (19). Equation (19) can be rewritten as
cos θe ≈ 1 − S−

γ
+ S+

γ
and hence cos θe = 1 − S−

γ
+ cos θa.

Thus cos θe − cos θa ≈ 1 − S−
γ
> 0, as expected. Note that S+

is significatively smaller than S−, thus justifying equation (27).
In general, the advancing contact angle can be determined

in the following way. From equation Pa = �(h3) we get
Pa as a function of the thickness h3. But the second, not
the first, solution of the latter equation should be selected
(figure 5, curve 3). Using such a solution in equation (24)
yields −�(h3)(Ha − h3)+

∫ ∞
h3
�(h) dh = γ , that provides the

sought height of the drop Ha as a function of h3: Ha = h3 +
γ−∫ ∞

h3
�(h) dh

−�(h3)
, where Pa = �(h3) < 0 and γ − ∫ ∞

h3
�(h) dh >

0, so that indeed Ha > h3. Note that, during the process
of pumping liquid into the drop (figure 4) starting from the
equilibrium position, the radius of the drop base contact line,
L, remains constant and equal to the initial equilibrium value
Le. Let ρa be the radius of curvature of the drop at the moment
of advancing. From figure 1 we have in this case

Le = ρa sin θa = − γ

�(h3)

√
1 − cos2 θa

= − γ

�(h3)

√
1 −

(∫ ∞

h3

�(h) dh

)2

, (28)

where we have used equation (25). Then equation (28)
determines the thickness h3 as a function of the initial value
of the equilibrium radius of the drop base. The volume (here
in the two-dimensional case it is the area of the corresponding
circular segment) of the drop at the moment of advancing, Va,
can be expressed as

Va = L2
e

sin2 θa
(θa − sin θa cos θa). (29)

Accordingly, using the relationship of θa and Va, we can
write θa = f (Va) thus showing that the advancing contact
angle is a function of the drop ‘volume’ at the moment of
the advancing. As a matter of fact, it is possible to show
that the advancing contact angle increases with the decrease
of the drop volume. In [10] it is reported that the drop
advancing contact angle increases as the volume of the drop
decreases. In [11] the advancing contact angle of bubbles
was considered, with a similar conclusion. We should have
foreseen such a result, as the equilibrium contact angle (13) is
also a function of the drop volume. Thus the static advancing
contact angle in the case of drops is not a unique characteristic
of solid substrates, but is also determined by the external
conditions. Furthermore, evaporation, which takes place more
intensively in the neighbourhood of the three-phase contact
line [12], makes the measurements of both advancing and
equilibrium contact angles of drops not so straightforward and
unambiguous in the case of volatile liquids. This is the reason
why a number of experiments on wetting/spreading of liquids
have been performed in thin capillaries, where evaporation
can be significantly diminished, if not ruled out. So let us
consider for completeness the case of a meniscus advancing
and receding inside a capillary.

6
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5. Advancing and receding contact angles in
capillaries

Let us now consider the equilibrium state of the wetting liquid
meniscus (0◦ � θe < 90◦) in a capillary with a flat slit of
breadth H � he, where he is the thickness of the equilibrium
wetting film covering the surface of the capillary walls. Then
the liquid in the central part of the slit is outside the range of
the surface force action. Neglecting, as in the case of the drop
studied above, the effect of gravitational forces, the radius of
curvature of the surface of the meniscus in the central part of
the slot, ρe, is constant. Let h be the distance along the normal
between the substrate and the surface of the liquid. Then h(x)
defines the profile of the liquid layer, where x is the coordinate
along the significant direction in the plane of symmetry of the
capillary.

Between the meniscus of constant curvature ρe and the flat
film of thickness he = const there is the transition zone. Only
capillary Laplace forces act in the region of the unperturbed
meniscus, and only surface forces act in the flat film. However,
both these forces act simultaneously within the transition zone
as in the case of drops. Then the equilibrium profile of the
meniscus is described by the Laplace–Derjaguin equation (7).
Here, however, the equilibrium pressure Pe is positive because
there is concavity from the liquid side. On the other hand, such
equilibrium pressure is unique and completely determined by
the capillary size H . This is easy to understand, because the
equilibrium height of the drop apex, H , was determined by the
vapour pressure p > ps (oversaturation), but in the case of
the capillary the corresponding H value is fixed, hence there
is only one vapour pressure p < ps (undersaturation), which
corresponds to the equilibrium.

Because of the symmetry of the meniscus, it suffices
to consider the equilibrium of a liquid layer h(x) over the
thickness range from h = he at x = ∞ to h = H at
x = 0. The solution of equation (7) includes three constants,
namely the excess pressure Pe = const > 0, and two
integration constants. To determine these constants, we have
three boundary conditions: two at the centre of the meniscus
h = H , h′ = −∞, x = 0, and the condition of swift matching
of the meniscus with the flat liquid film h = he, h′ = 0,
x → ∞.

Multiplying both sides of equation (7) by h′ and
integrating it with respect to x from 0 to x , we obtain

γ√
1 + h′2 = ψ(h, Pe), (30)

where

ψ(h, Pe) = Pe(H − h)−
∫ ∞

h
� dh. (31)

By solving equation (30) with respect to h′, we obtain h′ =
−[ γ 2

ψ2(h,Pe)
− 1]1/2. Then using the above given boundary

conditions and equations (30) and (31) we get

γ = ψ(he, Pe) = Pe(H − he)−
∫ ∞

he

� dh. (32)

This equation (32), together with the expression of Pe > 0,
allows expression of the equilibrium contact angle, θe, in a

Figure 6. Derjaguin isotherms,�(h): 1—complete wetting,
2—partial wetting, where here he is the equilibrium thickness of an
equilibrium flat film along the capillary, coexisting ahead of the
meniscus.

form similar to equation (13). We have for the capillary
meniscus

cos θe ≈ 1 + 1

γ

∫ ∞

he

�(h) dh, for hs 
 H. (33)

There are three solutions of equation �(he) = Pe > 0
(figure 6). Only the thinnest one satisfies the thermodynamic
stability condition d�(he)

dh < 0. It belongs to the so-called
α-branch of the Derjaguin isotherm. The other metastable
solution, hβ , belongs to the β-branch. For a more detailed
discussion of this question see [5]. Note that h∗ corresponds
to an unstable equilibrium flat film (figure 6).

It is noteworthy that the lower limit of integration, he, in
equation (13) for the drop and equation (33) for the meniscus
in a capillary are very different, as illustrated in figures 3 and 6,
respectively. On the other hand, another difference is that there
are an infinite number of equilibrium contact angles for a drop
on a solid substrate (each of them corresponds to a value of the
oversaturated vapour pressure in the surrounding air), but there
is a single, uniquely defined equilibrium contact angle of the
liquid meniscus in a capillary.

Only equilibrium α-films are observed on the surface of
thin capillaries if Pe > �max, where �max is the stability
limit of β-films (figure 6). This is the case for narrow
enough capillaries. But if Pe < �max, the formation of
metastable β-films is possible, and it has been observed
experimentally [13, 14].

To obtain the equilibrium profile of a liquid in a flat
capillary, we rewrite the Laplace–Derjaguin equation (7) in the
following form:

h′′ = 1

γ
[1 + (h′)2]3/2[Pe −�(h)], (34)

where it appears that the sign of h′′, and therefore the curvature
of the surface, is determined by the sign of the difference
[Pe −�(h)]. In this case Pe = const > 0, but the value of
�(h) varies from �(he) = Pe to � = 0 for h → H . If
Pe > �max, the bracketed difference is always positive and
the liquid profile inside the transition zone is (from the liquid
side) concave everywhere (h′′ > 0). However, in thick enough
capillaries Pe < �max (figure 6). Then h′′ < 0 and the surface
of the liquid should possess a locally convex cap (from the

7
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Figure 7. Meniscus in a capillary. Upper figure: Derjaguin isotherm,
�(h) in the case of partial wetting (curve 1). The lower figure
illustrates the corresponding curves, 2–4, of the function
ψ(h, P) (31), determining the conditions of local equilibrium of the
meniscus, 3–4, and equilibrium, 2.

liquid side). Below we consider just this case of relatively
thick capillaries, r > rcr. If �max ∼ 105 cm−2 dyne, then
γ

rcr
∼ 105 dyne and in the case of water γ ∼ 72 dyne cm−1:

rcr ∼ 7.2 × 10−4 cm ∼ 7 μm.
According to equations (30) and (31) the function

ψ(h, Pe) should be such that 0 � ψ(h, Pe) � γ . As
ψ(h, Pe) = 0, the derivative h′ diverges to infinity at the
thickness corresponding to the centre of the capillary, h = H .
When ψ(h, Pe) = γ , there is zero derivative, which is satisfied
for h = he. As an illustration of the equilibrium function
ψ(h, Pe), curve 2 is shown in figure 7. The positions of
the extrema of curve 2 can be found by differentiation of
equation (31) with respect to h, which results in

dψ(h, Pe)

dh
= −Pe +�(h). (35)

Hence, as the liquid thickness varies in the range he < h <

H , the positions of the maximum and minimum on curve 2
correspond to the thicknesses hu and hβ , where the straight line
Pe = const intersects the Derjaguin isotherm 1 and Pe = �(h)
(figure 7).

Let us consider that the pressure behind the meniscus is
changed by a value �P relative to its equilibrium value Pe,
while the film in front and the vapour maintain their initial
equilibrium state. For �P 
= 0, i.e. in a non-equilibrium
system, we can subdivide the overall system into the following
regions (figure 8): a region 1 in a state of quasi-equilibrium
where the hydrodynamic pressure P = Pe + �P is constant
everywhere; a transport region 2 where viscous liquid flow
occurs with the pressure gradually changing from P to Pe, and
a region 3 of thin flat film, where the pressure equals the initial
equilibrium Pe. Since the highest pressure difference in the
transition region occurs in the thinnest part 2, it is clear that
region 2 covers part of the transition region which immediately
adjoins the equilibrium film he in region 3.

Figure 8. Profile of the meniscus in a flat capillary of thickness 2H
indicating the various zones discussed in the main text.

Flow starts at once under the action of the pressure
difference thus created, which can be separated provisionally
into a rapid and a slow one. Since the resistance of the
liquid–vapour phase boundary to changes in its form is small
at low capillary numbers, Ca = Uη/γ 
 1, the fastest
change is that of the curvature of the meniscus; U is the
velocity of the receding/advancing meniscus, and η is the
shear/dynamic viscosity. Hence, a new quasi-equilibrium state
of the meniscus occurs with the pressure change, so that

P = Pe +�P = γ h′′
(
1 + h′2)3/2

= γ

ρ
= const. (36)

This is outside the zone of action of surface forces, where
ρ = cos θ/H is the radius of curvature of the main part
of the meniscus and θ is a new value of the contact angle,
corresponding to the local equilibrium state, which cannot
be a true equilibrium any more. Then the change in the
curvature of the meniscus causes a change in the vapour
pressure over it, and hence the liquid starts to transfer by
evaporation/condensation from the surface of the meniscus to
the surface of the equilibrium film in front (zone 3 in figure 8).
Besides, the increase in pressure inside the liquid causes it to
flow to those parts of the film where the initial equilibrium
pressure �(he) = Pe is still maintained. Note that the
argument applies equally well to the case when the sign of�P
is opposite, with the corresponding direction of the transfer
processes inverted.

To simplify matters in the following we limit the
discussion to liquids with a low volatility, whose rates of
evaporation and condensation are small. The main assumption
is that the liquid flow from the quasi-equilibrium meniscus
to the equilibrium film in front is very slow until some
critical pressure difference, �Pa (in the case of an advancing
meniscus) or �Pr (in the case of a receding meniscus), is
reached. These conditions may not exist in the case of
complete wetting, when the equilibrium film is sufficiently
thick. However, static hysteresis is usually observed in cases of
partial wetting (at 0 < θ ), when the surface of the solid body
is covered with significantly thinner films, where the viscous
flow resistance is very high.

We write the conditions of quasi-equilibrium of the
meniscus in region 1, in the boundaries of which fluxes can
be neglected and where the excess pressure can be considered
to be constant at all points and equal to P = Pe + �P =

8
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const. We assume that equation (36) still describes the
quasi-equilibrium profile of the liquid, h(x), in region 1 in
the absence of true thermodynamic equilibrium in the whole
system. That is, we assume that

γ h′′

(1 + h′2)3/2
+�(h) = P. (37)

The earlier mentioned two boundary conditions at the centre of
the meniscus are maintained. However, since region 1 cannot
be now connected by an equilibrium or quasi-equilibrium
liquid profile with the flat equilibrium film in front, we must
here assume that there is a flow zone 2 in between (figure 8).
The third condition is P = const , since the value of the excess
pressure P is now fixed independently and is not determined
by the thickness of the slit and the Derjaguin pressure, as in the
equilibrium case.

The solution range of equation (37) is limited from below
by a certain thickness hc � he, corresponding to the beginning
of the flow zone (figure 8). The condition h′ = 0 is not
fulfilled at h = hc and a micro-contact angle is formed there,
tan θ ≈ θ = h′(he), whose value can be found by solving
equation (37).

By integrating equation (37) once, we obtain again
equations (30) and (31), but now we have

ψ(h, P) = P(H − h)−
∫ ∞

h
� dh, (38)

where the equilibrium pressure, Pe, is replaced by the new
non-equilibrium pressure, P . The region where a solution of
equation (37) exists is determined by the real values of h′,
which exist only under the same conditions as in the case of
equilibrium; that is,

0 � ψ(h, P) � γ. (39)

There is no solution if ψ > γ or ψ < 0. If any of these
conditions is violated then the boundary of the flow zone,
hc, and the centre of the meniscus cannot be connected by a
continuous profile. Accordingly, quasi-equilibrium becomes
impossible, i.e., the meniscus cannot be at rest and must start
moving. As will be shown below, the violation of one of
the inequalities in (39) determines the static advancing contact
angle, θa, and the violation of the other condition the static
receding contact angle, θr.

Let us first determine the value of the static advancing
contact angle, θa. For the motion of the meniscus to the
front of the capillary, the pressure in the liquid must increase,
which diminishes the Laplace pressure jump at the meniscus–
vapour interface. Consequently, in this case P < Pe and
�P < 0. This means that ψ(h, P) (curve 3) is located
below ψ(h, Pe) (curve 2) in figure 7. Since P < Pe, the
thickness interval between the positions of the minimum and
the maximum broadens for the Derjaguin pressure in the case
of partial wetting (curve 1, figure 7). With P < �max we have
h1 < hu and h2 > hβ .

When the absolute value of �P increases to a certain
critical value�Pa, the curveψ(h, P) can touch at its minimum
the abscissa axis h, as shown by curve 3 in figure 7. This

Figure 9. Meniscus on a capillary (see also figure 7). Critical profiles
and a—static advancing contact angle with a vertical tangent for the
thickness h1; b—static receding contact angle with violation of the
quasi-equilibrium condition in the region of thick β-film, h4.

means that a point with vertical tangent appears on the profile
for h = h1, where h′ = −∞ (figure 9).

For |�P| > �Pa the curve ψ(h, P) intersects the axis
h and the value of ψ becomes negative for a certain range of
thicknesses. Vertical tangents appear at the upper and lower
parts of the profile, which becomes discontinuous (dashed
lines in figure 9(a)). Note that, in the region of the profile
marked by the dashed line, different Derjaguin pressures act,
corresponding always to attraction between identical phases.
Thus the dashed part of the profile is unstable; the profile loses
stability and a ‘transfer’ of liquid starts towards the front of the
spreading film. Note that equation (37) does not give the profile
of the flowing film, but only determines the limiting positions
of the static profile before the flow has set in. We see how
complex the flow picture is after the advancing started.

Although the mechanism of violation of the equilibrium is
understood physically, the value of the static advancing contact
angle, θa, cannot be calculated exactly, since the point h = h1

belongs to a region where the condition h′2 
 1 is violated
and the flat film Derjaguin pressure, �(h), cannot be used.
We therefore limit ourselves to an approximate estimation of
θa. For θ = θa and P = Pa the function ψ = 0 at h = h1

(figure 7). Hence, from equation (38) it follows that

Pa(H − h1) =
∫ ∞

h1

�(h) dh. (40)

As the pressure Pa and contact angle θa are connected by the
general relationship Pa = γ cos θa/H , we get

cos θa = 1

γ (1 − h1
H )

∫ ∞

h1

�(h) dh ≈ 1

γ

∫ ∞

h1

�(h) dh. (41)

It appears that the functional dependence (41) coincides with
the corresponding expression for the static advancing contact
angle in the case of drops (25). However, now the contact
angle obtained has a unique value. Note that the integration in
equation (41) (advancing contact angle in the meniscus case)
and in equation (23) (advancing contact angle for the case of a
drop) is to be done over quite very different regions. We solve
the equation �(h1) = γ cos θa/H , using the second of its
three solutions, that gives h1 = F(γ cos θa/H ). Substitution

9



J. Phys.: Condens. Matter 21 (2009) 464121 V M Starov and M G Velarde

of the latter expression into equation (41) gives a non-linear
equation to determine cos θa. This permits us to conclude
that the Derjaguin isotherm determines uniquely not only the
equilibrium value of the contact angle but also the static
advancing contact angle, θa.

Let us now consider the static receding contact angle,
θr. In this case, the value �P > 0, since the curvature of
the meniscus increases with decreasing pressure in the liquid
phase. It follows from equation (38) that for P > Pe the line
ψ(h, P) should be everywhere above the equilibrium curve
ψ(h, Pe). Its shape is shown by curve 4 in figure 7. Violation
of the conditions of quasi-equilibrium occurs in this case if
ψ(h, P) = γ ; i.e., an increase in �P to such a critical
value �Pr makes the curve ψ(h, Pr) intersect the dashed line
γ = const.

Consider only the case of quasi-equilibrium with receding
meniscus in thick enough capillaries, when Pe < �max. Under
certain conditions, which are determined by the actual form of
the Derjaguin isotherm, �(h), with increasing �P , the curve
ψ(h, P) can touch the straight line γ = const with the right-
hand rising maximum (at h = h4) earlier than thickness h3

comes out of the transfer zone (h3 < hc) (figure 7, curve 4).
Then a point with horizontal tangent h′ = 0 appears on the
convex part of the meniscus. Violation of the quasi-equilibrium
occurs at h = h4 and then the earlier mentioned stability
condition D is violated. The quasi-equilibrium liquid profile
becomes unstable and flow has to set in.

For P > Pr, the part of the profile indicated in figure 9(b)
by dashed lines starts sliding. It can be seen from figure 7
that the thickness h4 belongs to the β part of the Derjaguin
isotherm 1. Thus, when the meniscus is displaced from it, a
thick metastable β-film should remain behind, a prediction that
has been confirmed experimentally [13–15].

Since the profile of the receding meniscus in the transition
zone has a low slope, the value of the static receding contact
angle, θr, in the case of sufficiently thick capillaries, that is, for
Pe < �max, can be determined exactly. For this purpose we
use the following system of equations:

Pr(H − h4)−
∫ ∞

h4

�(h) dh = γ, (42)

Pr = �(h4), (43)

where the first equation was derived from expression (38), with
ψ = γ , for P = Pr and h = h4. The second equation results
from the fact that h4 is an inflection point at which h′′ = 0.
Then from equation (37) follows that �(h4) = Pr.

For the solution of the systems of equations (42) and (43),
we must know the form of the Derjaguin isotherm�(h). If we
choose for its β branch a behaviour like � = B/h2, valid for
β-films of water, we obtain, after integration in equation (42),

h4 = B

γ

(√
1 + γ H

B
− 1

)
and Pr = B

h2
4

, (44)

where B is a parameter of the surface forces. If h4 
 H , these
expressions (44) reduce to h4 ≈ √

B H/γ and Pr ≈ γ /H ,
respectively. Hence, θr ≈ 0. Thus, if thick β-films are formed

behind the receding meniscus, the static receding contact angle,
θr, should be close to zero, a prediction in good agreement with
experimental observations [15–17]. This solution is valid also
for the case of contact of two immiscible liquids in a capillary
(for example, water–oil). The only difference is that instead of
the isotherm of a wetting film the theory should include in this
case the Derjaguin pressure of thin layers of wetting liquids
enclosed between a solid substrate and the other liquid.

6. Conclusion

In view of the results found we can conclude by emphasizing
that the static contact angle hysteresis on homogeneous,
perfectly flat solid surfaces is directly related to the peculiar
form of the Derjaguin isotherm. Needless to say, in reality
with heterogeneous surfaces the possibility of the simultaneous
appearance of static hysteresis phenomena of different nature
must be taken into consideration.

It would be of interest to observe the behaviour of
deformed menisci in a capillary or a drop for θe < θ < θa and
for θe > θ > θr. If static hysteresis is related to the conditions
of quasi-equilibrium, a slow motion of the position of the
apparent three-phase contact line wetting perimeter should be
observed. The latter slow motion should change dramatically
upon attaining the static advancing or receding contact angles,
θs and θr, respectively. Contact line stability and line tension
are also interesting problems of ongoing research [18].
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